miR-153 inhibits epithelial-to-mesenchymal transition in hepatocellular carcinoma by targeting Snail.

نویسندگان

  • Wenfei Xia
  • Xiaopeng Ma
  • Xingrui Li
  • Hong Dong
  • Jilin Yi
  • Weixia Zeng
  • Zhifang Yang
چکیده

Epithelial-to-mesenchymal transition (EMT) has been implicated as a dynamic cellular process in embryonic development and invasion of human cancers. Snail1 is a critical convergence hub in EMT regulation which transcriptionally represses E-cadherin expression. Currently, published data indicate that upregulation of Snail is mainly due to transcriptional activation and regulation of protein stability and cellular location. However, whether there is an alternative regulatory mechanism remains unclear. Our study showed that the expression of miR-153 was noticeably downregulated in hepatocellular carcinoma (HCC) cell lines and tissues, compared with normal liver epithelial cells (NLCs) and matched adjacent normal HCC tissues. Ectopic expression of miR-153 inhibited the migration and invasion ability of HCC cells, while suppression of miR-153 rescued this inhibitory effect. In addition, upregulation of miR-153 in HCC cells resulted in a decrease in epithelial markers, E-cadherin and α-catenin, and an increase in mesenchymal markers, N-cadherin and vimentin, and vice versa. Moreover, we demonstrated that miR-153 downregulated Snail expression by directly targeting the 3'-untranslated region (3'UTR) of Snail. Taken together, our results suggest that miR-153 plays a critical role in suppressing EMT and HCC progression by direct suppression of Snail expression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suppression of epithelial-mesenchymal transition in hepatocellular carcinoma cells by Krüppel-like factor 4

Hepatocellular carcinoma (HCC) is one of the most malignant and lethal human cancers. Epithelial-mesenchymal transition (EMT) enhances the carcinogenesis of HCC, and therapies targeting EMT appear to be promising treatments. We have previously shown that Krüppel-like factor 4 (KLF4) suppressed EMT of HCC cells through downregulating EMT-associated proteins. Here, we examined the roles of microR...

متن کامل

MiR-195 suppresses the metastasis and epithelial–mesenchymal transition of hepatocellular carcinoma by inhibiting YAP

MiR-195, a novel cancer-related microRNA, was previously reported to play an important role in many malignancies. This study aimed to investigate the role of miR-195 mediated epithelial-mesenchymal transition (EMT) and the progression of hepatocellular carcinoma (HCC) as well as the underlying mechanisms. Our result demonstrated that miR-195 were significantly down regulated in HCC and its decr...

متن کامل

MiR-145 Regulates Epithelial to Mesenchymal Transition of Breast Cancer Cells by Targeting Oct4

MiR-145 could regulate tumor growth, apoptosis, migration, and invasion. In our present study, we investigated its role in epithelial-mesenchymal transition (EMT). Expression of miR-145 was decreased in breast tumor tissues at T3&4 stages in comparison with those at T1&2. Over-expression of miR-145 mimics enhanced protein levels of E-cadherin and dampened those of α-SMA and Fibronectin, indicat...

متن کامل

miR-100 Induces Epithelial-Mesenchymal Transition but Suppresses Tumorigenesis, Migration and Invasion

Whether epithelial-mesenchymal transition (EMT) is always linked to increased tumorigenicity is controversial. Through microRNA (miRNA) expression profiling of mammary epithelial cells overexpressing Twist, Snail or ZEB1, we identified miR-100 as a novel EMT inducer. Surprisingly, miR-100 inhibits the tumorigenicity, motility and invasiveness of mammary tumor cells, and is commonly downregulate...

متن کامل

The SNAIL/miR-128 axis regulated growth, invasion, metastasis, and epithelial-to-mesenchymal transition of gastric cancer

miR-128 is expressed in various tumors, but its expression and function in gastric cancer have not been defined. Thus, the goal of this study was to characterize miR-128 in gastric cancer. We found first that miR-128 is down-regulated in gastric cancer cell lines and tissues, and this dysregulation is correlated with DNA methylation and the transcription factor SNAIL. Using prediction tools, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Oncology reports

دوره 34 2  شماره 

صفحات  -

تاریخ انتشار 2015